A Comparative Analysis of the Neural Basis for Dorsal-Ventral Swimming in the Nudipleura

نویسندگان

  • Joshua L. Lillvis
  • JOSHUA L. LILLVIS
  • Paul S. Katz
چکیده

Despite having similar brains, related species can display divergent behaviors. Investigating the neural basis of such behavioral divergence can elucidate the neural mechanisms that allow behavioral change and identify neural mechanisms that influence the evolution of behavior. Fewer than three percent of Nudipleura (Mollusca, Opisthobranchia, Gastropoda) species have been documented to swim. However, Tritonia diomedea and Pleurobranchaea californica express analogous, independently evolved swim behaviors consisting of rhythmic, alternating dorsal and ventral flexions. The Tritonia and Pleurobranchaea swims are produced by central pattern generator (CPG) circuits containing homologous neurons named DSI and C2. Homologues of DSI have been identified throughout the Nudipleura, including in species that do not express a dorsal-ventral swim. It is unclear what neural mechanisms allow Tritonia and Pleurobranchaea to produce a rhythmic swim behavior using homologous neurons that are not rhythmic in the majority of Nudipleura species. Here, C2 homologues were also identified in species that do not express a dorsal-ventral swim. We found that certain electrophysiological properties of the DSI and C2 homologues were similar regardless of swim behavior. However, some synaptic connections differed in the nondorsal-ventral swimming Hermissenda crassicornis compared to Tritonia and Pleurobranchaea. This suggests that particular CPG synaptic connections may play a role in dorsal-ventral swim expression. DSI modulates the strength of C2 synapses in Tritonia, and this serotonergic modulation appears to be necessary for Tritonia to swim. DSI modulation of C2 synapses was also found to be present in Pleurobranchaea. Moreover, serotonergic modulation was necessary for swimming in Pleurobranchaea. The extent of this neuromodulation also correlated with the swimming ability in individual Pleurobranchaea; as the modulatory effect increased, so too did the number of swim cycles produced. Conversely, DSI did not modulate the amplitude of C2 synapses in Hermissenda. This indicates that species differences in neuromodulation may account for the ability to produce a dorsal-ventral swim. The results indicate that differences in synaptic connections and neuromodulatory dynamics allow the expression of rhythmic swim behavior from homologous non-rhythmic components. Additionally, the results suggest that constraints on the nervous system may influence the neural mechanisms and behaviors that can evolve from homologous neural components. INDEX WORDS: Evolution, Neuromodulation, Homology, Mollusc, Electrophysiology, Synapse A COMPARATIVE ANALYSIS OF THE NEURAL BASIS FOR DORSAL-VENTRAL SWIMMING IN THE NUDIPLEURA

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Homology and homoplasy of swimming behaviors and neural circuits in the Nudipleura (Mollusca, Gastropoda, Opisthobranchia).

How neural circuit evolution relates to behavioral evolution is not well understood. Here the relationship between neural circuits and behavior is explored with respect to the swimming behaviors of the Nudipleura (Mollusca, Gastropoda, Opithobranchia). Nudipleura is a diverse monophyletic clade of sea slugs among which only a small percentage of species can swim. Swimming falls into a limited n...

متن کامل

Parallel evolution of serotonergic neuromodulation underlies independent evolution of rhythmic motor behavior.

Neuromodulation can dynamically alter neuronal and synaptic properties, thereby changing the behavioral output of a neural circuit. It is therefore conceivable that natural selection might act upon neuromodulation as a mechanism for sculpting the behavioral repertoire of a species. Here we report that the presence of neuromodulation is correlated with the production of a behavior that most like...

متن کامل

Neurochemical and Neuroanatomical Identification of Central Pattern Generator Neuron Homologues in Nudipleura Molluscs

Certain invertebrate neurons can be identified by their behavioral functions. However, evolutionary divergence can cause some species to not display particular behaviors, thereby making it impossible to use physiological characteristics related to those behaviors for identifying homologous neurons across species. Therefore, to understand the neural basis of species-specific behavior, it is nece...

متن کامل

A New Division of the Human Claustrum Basis on the Anatomical Landmarks and Morphological Findings

Purpose: The subdivision of claustrum into parts in some species exists in literature. Those are mainly based on a pattern of its connections with various cortical areas, method of staining, immunoreactivity of its neurons etc. The aim of this study was the division of the human claustrum into different parts, for first time, based on morphology, density, arrangement of claustral neurons as wel...

متن کامل

Diabetes Mellitus Type1 and Neuronal Degeneration in Ventral and Dorsal Hippocampus

  Background and Objectives: Studies have documented the morhplogical, neurochemical and functional difference between the dorsal and ventral zones of hippocampus. The aim of this study was to assess the effects of chronic diabetes mellitus type1 on ventral and dorsal zones of hippocampus. Methods: Experimental diabetes was induced by stereptozotocin at a dose of 60 mg/kg. At the end of 8 wee...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015